If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+33t-12=0
a = 6; b = 33; c = -12;
Δ = b2-4ac
Δ = 332-4·6·(-12)
Δ = 1377
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1377}=\sqrt{81*17}=\sqrt{81}*\sqrt{17}=9\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-9\sqrt{17}}{2*6}=\frac{-33-9\sqrt{17}}{12} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+9\sqrt{17}}{2*6}=\frac{-33+9\sqrt{17}}{12} $
| -(x+3)+2(x+7)=-20 | | -10+16=7y+5y | | -7+5r=3(2r-1) | | 100/x=10/5 | | 35=4t-7 | | 5x+2-x=3(x-7) | | 7(1-4n)=-19-2n | | 15/6=100/x | | 3/4y=2/3 | | -42=7c | | 2^5x-6=2^2x-6 | | -5-2(-6-m)=-7-5m | | x²-8x+5=0 | | 4x-8=-4x+16 | | 181-u=286 | | Y-8x-5=0 | | 5u+9=51 | | 5x^2-15+4x^2-2x=180 | | 24x+8+2x=3(10x-3) | | -1=8y | | -2/5t+1=3/10t+-3 | | -3x=-3x-8(x-8) | | (0.1+a)•1=5.1 | | 4/3w-3/4=-7/4w+5 | | 5d+7.75=4+2.25d | | 1+n=2(n+4) | | 138-u=233 | | 4/3v-1/v=v+2/2v^2 | | 2x+6=-30-5x | | 3x/7=41 | | -8((8x-26)/6)+3x=-19 | | 6(x−9)=3x+2 |